

Tetrahedron Letters 41 (2000) 3709-3712

Synthesis and photophysical study of unsymmetrical porphyrin pentamers

M. Ravikanth

Department of Chemistry, Indian Institute of Technology, Powai, Mumbai 400 076, India Received 21 December 1999; accepted 21 March 2000

Abstract

A dithiaporphyrin building block with an N_2S_2 core is synthesized and coupled with porphyrin building blocks with N_4 cores to obtain an unsymmetrical pentamer. Steady-state fluorescence spectra indicated that there is an efficient energy transfer from an excited N_4 porphyrin unit to an N_2S_2 porphyrin unit. © 2000 Elsevier Science Ltd. All rights reserved.

Unsymmetrical porphyrin arrays are suitable models for mimicking energy transfer processes of photosynthesis. Selective excitation of one porphyrin unit and the energy transfer from that unit to another porphyrin unit is feasible in unsymmetrical porphyrin arrays. Recently, several unsymmetrical porphyrin dimers such as porphyrin–chlorin and porphyrin–corrole have been synthesized in order to obtain long lived charge transfer states. Interestingly, there is no report on unsymmetrical arrays containing core modified porphyrins. Core modification of porphyrin rings by introducing thiophene, furan, selenophene, tellurophene, etc. in place of pyrrole leads to novel core modified porphyrins which exhibit interesting properties in terms of both aromatic characters and their ability to stabilize metals in unusual oxidation states. Herein, we report the first synthesis of an unsymmetrical porphyrin pentamer containing a core modified porphyrin with an N_2S_2 core connected to porphyrins with N_4 cores via diaryl ethyne bridging groups.

To construct an unsymmetrical porphyrin pentamer, one needs easy access to porphyrin building blocks. The porphyrin building block 5,10,15-tri(3,5-di-tert-butylphenyl)-20-(4-iodophenyl) porphyrin, 1, was synthesized by following the literature procedure. The other desired core modified porphyrin building block, 5,10,15,20-tetrakis-[4-(2-trimethylsilylethynyl)phenyl]-21,23-dithiaporphyrin, 2, was obtained in 17% yield by reacting 2,5-[4-(2-trimethylsilylethynyl)phenyl hydroxymethyl]thiophene with pyrrole in the presence of a catalytic amount of BF_3 - $(OEt)_2$ in $CHCl_3$. Deprotection with K_2CO_3 in THF/methanol gave 5,10,15,20-tetrakis-(4-ethynylphenyl)21,23-dithia porphyrin 2a in 80% yield. Coupling 1 with 2a in toluene/triethylamine at $35^{\circ}C$ in the presence of $Pd_2(dba)_3$ and $AsPh_3$ gave the unsymmetrical porphyrin pentamer 3 in 37% yield (Scheme 1). The crude pentamer was initially passed through a silica gel column to remove unreacted materials and subjected to size exclusion column chromatography (SEC). The pentamer obtained from the SEC column contained small impurities of

0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)00471-8 higher and lower porphyrin oligomers and was finally purified by preparative HPLC and characterized by 1H NMR, MALDI mass, absorption and emission spectroscopies. 5 Zn(II) was introduced into the N_4 porphyrin core by following the standard Zn(OAc) $_2$ /methanol method.

Scheme 1. Synthetic scheme for the preparation of 3

The absorption spectra of 1, 2 and 3 are shown in Fig. 1. It is clear from Fig. 1 that the absorption spectrum of 3 exhibited bands corresponding to both 1 and 2 indicating a weak interaction between the

porphyrin units. The emission spectra of 1, 2 and 3 recorded at 420 nm are shown as an inset in Fig. 1. The N_4 porphyrin unit absorbs more strongly than the N_2S_2 unit at 420 nm. However, the emission spectrum of the pentamer closely matches the N_2S_2 porphyrin unit and no emission was observed from the N_4 unit. This indicates that selective excitation of the N_4 unit resulted in the energy transfer from the N_4 unit to the N_2S_2 unit. The emission spectrum was recorded at different concentrations to confirm that the observed energy transfer is an intramolecular process. An identical emission spectrum was obtained for 3 at different wavelengths suggesting efficient energy transfer from the N_4 unit to the N_2S_2 unit. Similar observations were made when the Zn porphyrin unit was excited selectively at 550 nm. The Zn porphyrin absorbs about four times as intensively as the free base porphyrin at 550 nm. However, the excitation at 550 nm results in the emission exclusively from the N_2S_2 porphyrin unit. This kind of efficient energy transfer is not possible in free base symmetrical porphyrin pentamers where all the porphyrin units are the same and absorb in the same region. Thus, the unsymmetrical pentamer reported here is unique in the sense that it can be excited selectively and it shows an efficient energy transfer in the free base form. The synthesis and detailed photodynamics of several such unsymmetrical arrays are presently under investigation in our laboratory.

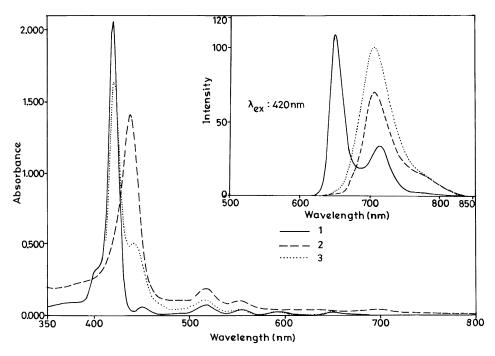


Fig. 1. Absorption and emission (inset) spectra recorded in CH₂Cl₂

Acknowledgements

This work was supported by a grant from the Council of Scientific and Industrial Research (CSIR) and the Department of Science and Technology (DST), Government of India, New Delhi.

References

- (a) Paolesse, R.; Taglitesta, P.; Boschi, T. Tetrahedron Lett. 1996, 37, 2637. (b) Pandey, R. K.; Forsyth, T. P.; Gerzevske, K. R.; Lin, J. J.; Smith, K. M. Tetrahedron Lett. 1992, 33, 5315. (c) Gust, D.; Moore, T. A.; Moore, A. L.; Krasnovsky Jr., A. A.; Liddell, P. A.; Nicodem, D.; Degraziano, J. M.; Kerrigan, P.; Makings, L. R.; Pessiki, P. J. J. Am. Chem. Soc. 1993, 115, 5684. (d) Bonfantini, E. E.; Officer, D. L. Tetrahedron Lett. 1993, 34, 8531. (e) Arnold, D. P.; Nischinsk, L. J. Tetrahedron Lett. 1993, 34, 693. (f) Paolesse, R.; Pandey, R. K.; Forsyth, T. P.; Jaquinod, L.; Gerzevske, K. R.; Nurco, D. J.; Senge, M. O.; Lioccia, S.; Boschi, T.; Smith, K. M. J. Am. Chem. Soc. 1996, 118, 3869. (g) Kadish, K. M.; Guo, N.; Camelbecke, E. V.; Froiio, A.; Paolesse, R.; Monti, D.; Taglitesta, P.; Boschi, T.; Prodi, L.; Bolletta, F.; Zaccheroni, N. Inorg. Chem. 1998, 37, 2358.
- (a) Ravikanth, M.; Chandrashekar, T. K. Struc. & Bonding 1995, 82, 105, and references cited therein. (b) Grazynski, L.-L.; Olmstead, M. M.; Balch, A. L. Chem. Eur. J. 1997, 3, 268. (c) Gross, Z.; Saltsman, I.; Pandian, R. P.; Barzilay, C. M. Tetrahedron Lett. 1997, 38, 2383.
- 3. Ravikanth, M.; Strachan, J. P.; Li, F.; Lindsey, J. S. Tetrahedron 1998, 37, 2358.
- 4. Kawabata, S.; Yamazaki, I.; Nishimura, Y.; Osuka, A. J. Chem. Soc., Perkin Trans. 2 1997, 479.
- 5. Spectral data for selected compounds: Compound 2: 1 H NMR (CDCl₃, δ in ppm) 0.39 (s, 36H, CH₃), 7.92 (AA′BB′, 8H, Ar), 8.17 (AA′BB′, 8H, Ar), 8.65 (s, 4H, β -pyrrole), 9.65 (s, 4H, β -thiophene). LD–MS C₆₄H₆₀N₂S₂Si₄ calcd av. mass: 1033.7; obsd m/z: 1037.1. UV–vis (λ_{max} , nm) 439, 516, 551, 632, 698. Compound 2a: 1 H NMR (CDCl₃, δ in ppm) 3.33 (s, 4H, CCH), 7.95 (AA′BB′, 8H, Ar), 8.20 (AA′BB′, 8H, Ar), 8.67 (s, 4H, β -pyrrole), 9.67 (s, 4H, β -thiophene). LD–MS C₅₂H₂₈N₂S₂ calcd av. mass: 744.9; obsd m/z: 746.4. UV–vis. (λ_{max} , nm) 439, 516, 552, 633, 698. Compound 3: 1 H NMR (CDCl₃, δ in ppm) –2.63 (s, 8H, NH), 1.54 (m, 216H, -CH₃), 7.83 (m, 12H, Ar), 8.05 (m, 24H, Ar), 8.13 (m, 8H, Ar), 8.22 (d, 8H, Ar), 8.34 (d, 8H, Ar), 8.41 (d, 8H, Ar), 8.88–8.97 (m, 36H, β -pyrrole), 9.89 (s, 4H, β -thiophene). LD–MS C₃₂₄H₃₃₂N₁₈S₂ calcd av. mass: 4542.5; obsd m/z: 4543.9. UV–vis (λ_{max} , nm) 421, 441, 518, 555, 592, 648, 698.